Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J. physiol. biochem ; 80(1): 235-247, Feb. 2024. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-EMG-580

RESUMO

Both exercise and metformin are common effective clinical treatments of type 2 diabetic mellitus. This study investigated the functional role of exercise, metformin, and combination treatment on type 2 diabetic mellitus–induced muscle atrophy. In this experiment, a total of 10 BKS mice were set as the control group. A total of 40 BKS-db/db mice were randomly divided into the control group (db/db); the exercise intervention group (db/db + Ex), which ran on a treadmill at 7–12 m/min, 30–40 min/day, 5 days/week; the metformin administration group (db/db + Met), which was administered 300 mg/kg of metformin solution by gavage daily; and the exercise combined with metformin administration group (db/db + Ex + Met). After 8 weeks of intervention, their tibialis anterior muscles were removed. The levels of insulin signaling pathway proteins, ubiquitin proteasome, and autophagic lysosome–associated proteins were detected using western blot, the expression of MuRF1 and Atrogin-1 was detected using immunohistochemical staining, and the degradation of autophagosomes was detected using double-labeled immunofluorescence. The db/db mice exhibited reduced insulin sensitivity and inhibition of the autophagic–lysosome system, the ubiquitin–proteasome system was activated, and protein degradation was exacerbated, leading to skeletal muscle atrophy. Exercise and metformin and their combined interventions can increase insulin sensitivity, whereas exercise alone showed more effective in inhibiting the ubiquitin–proteasome system, improving autophagy levels, and alleviating skeletal muscle atrophy. Compared with metformin, exercise demonstrated superior improvement of muscle atrophy by promoting the synthesis and degradation of autophagy through the AMPK/ULK1 pathway. However, the combination treatment exhibits no synergistic effect on muscle atrophy. (AU)


Assuntos
Animais , Camundongos , Diabetes Mellitus Tipo 2/complicações , Atrofia Muscular , Exercício Físico , Metformina , Autofagia , Inibidores de Proteassoma
2.
J. physiol. biochem ; 80(1): 235-247, Feb. 2024. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-229953

RESUMO

Both exercise and metformin are common effective clinical treatments of type 2 diabetic mellitus. This study investigated the functional role of exercise, metformin, and combination treatment on type 2 diabetic mellitus–induced muscle atrophy. In this experiment, a total of 10 BKS mice were set as the control group. A total of 40 BKS-db/db mice were randomly divided into the control group (db/db); the exercise intervention group (db/db + Ex), which ran on a treadmill at 7–12 m/min, 30–40 min/day, 5 days/week; the metformin administration group (db/db + Met), which was administered 300 mg/kg of metformin solution by gavage daily; and the exercise combined with metformin administration group (db/db + Ex + Met). After 8 weeks of intervention, their tibialis anterior muscles were removed. The levels of insulin signaling pathway proteins, ubiquitin proteasome, and autophagic lysosome–associated proteins were detected using western blot, the expression of MuRF1 and Atrogin-1 was detected using immunohistochemical staining, and the degradation of autophagosomes was detected using double-labeled immunofluorescence. The db/db mice exhibited reduced insulin sensitivity and inhibition of the autophagic–lysosome system, the ubiquitin–proteasome system was activated, and protein degradation was exacerbated, leading to skeletal muscle atrophy. Exercise and metformin and their combined interventions can increase insulin sensitivity, whereas exercise alone showed more effective in inhibiting the ubiquitin–proteasome system, improving autophagy levels, and alleviating skeletal muscle atrophy. Compared with metformin, exercise demonstrated superior improvement of muscle atrophy by promoting the synthesis and degradation of autophagy through the AMPK/ULK1 pathway. However, the combination treatment exhibits no synergistic effect on muscle atrophy. (AU)


Assuntos
Animais , Camundongos , Diabetes Mellitus Tipo 2/complicações , Atrofia Muscular , Exercício Físico , Metformina , Autofagia , Inibidores de Proteassoma
3.
Angiogenesis ; 27(1): 5-22, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37103631

RESUMO

The world continues to contend with COVID-19, fueled by the emergence of viral variants. At the same time, a subset of convalescent individuals continues to experience persistent and prolonged sequelae, known as long COVID. Clinical, autopsy, animal and in vitro studies all reveal endothelial injury in acute COVID-19 and convalescent patients. Endothelial dysfunction is now recognized as a central factor in COVID-19 progression and long COVID development. Different organs contain different types of endothelia, each with specific features, forming different endothelial barriers and executing different physiological functions. Endothelial injury results in contraction of cell margins (increased permeability), shedding of glycocalyx, extension of phosphatidylserine-rich filopods, and barrier damage. During acute SARS-CoV-2 infection, damaged endothelial cells promote diffuse microthrombi and destroy the endothelial (including blood-air, blood-brain, glomerular filtration and intestinal-blood) barriers, leading to multiple organ dysfunction. During the convalescence period, a subset of patients is unable to fully recover due to persistent endothelial dysfunction, contributing to long COVID. There is still an important knowledge gap between endothelial barrier damage in different organs and COVID-19 sequelae. In this article, we mainly focus on these endothelial barriers and their contribution to long COVID.


Assuntos
COVID-19 , Doenças Vasculares , Animais , Humanos , Síndrome Pós-COVID-19 Aguda , SARS-CoV-2 , Células Endoteliais/fisiologia
4.
J Physiol Biochem ; 80(1): 235-247, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38112970

RESUMO

Both exercise and metformin are common effective clinical treatments of type 2 diabetic mellitus. This study investigated the functional role of exercise, metformin, and combination treatment on type 2 diabetic mellitus-induced muscle atrophy. In this experiment, a total of 10 BKS mice were set as the control group. A total of 40 BKS-db/db mice were randomly divided into the control group (db/db); the exercise intervention group (db/db + Ex), which ran on a treadmill at 7-12 m/min, 30-40 min/day, 5 days/week; the metformin administration group (db/db + Met), which was administered 300 mg/kg of metformin solution by gavage daily; and the exercise combined with metformin administration group (db/db + Ex + Met). After 8 weeks of intervention, their tibialis anterior muscles were removed. The levels of insulin signaling pathway proteins, ubiquitin proteasome, and autophagic lysosome-associated proteins were detected using western blot, the expression of MuRF1 and Atrogin-1 was detected using immunohistochemical staining, and the degradation of autophagosomes was detected using double-labeled immunofluorescence. The db/db mice exhibited reduced insulin sensitivity and inhibition of the autophagic-lysosome system, the ubiquitin-proteasome system was activated, and protein degradation was exacerbated, leading to skeletal muscle atrophy. Exercise and metformin and their combined interventions can increase insulin sensitivity, whereas exercise alone showed more effective in inhibiting the ubiquitin-proteasome system, improving autophagy levels, and alleviating skeletal muscle atrophy. Compared with metformin, exercise demonstrated superior improvement of muscle atrophy by promoting the synthesis and degradation of autophagy through the AMPK/ULK1 pathway. However, the combination treatment exhibits no synergistic effect on muscle atrophy.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Metformina , Camundongos , Animais , Metformina/uso terapêutico , Metformina/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/terapia , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Autofagia , Ubiquitinas/metabolismo , Ubiquitinas/farmacologia
5.
Cancers (Basel) ; 15(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37046617

RESUMO

Tumor progression and cancer metastasis has been linked to the release of microparticles (MPs), which are shed upon cell activation or apoptosis and display parental cell antigens, phospholipids such as phosphatidylserine (PS), and nucleic acids on their external surfaces. In this review, we highlight the biogenesis of MPs as well as the pathophysiological processes of PS externalization and its involvement in coagulation activation. We review the available evidence, suggesting that coagulation factors (mainly tissue factor, thrombin, and fibrin) assist in multiple steps of tumor dissemination, including epithelial-mesenchymal transition, extracellular matrix remodeling, immune escape, and tumor angiogenesis to support the formation of the pre-metastatic niche. Platelets are not just bystander cells in circulation but are functional players in primary tumor growth and metastasis. Tumor-induced platelet aggregation protects circulating tumor cells (CTCs) from the blood flow shear forces and immune cell attack while also promoting the binding of CTCs to endothelial cells and extravasation, which activates tumor invasion and sustains metastasis. Finally, in terms of therapy, lactadherin can inhibit coagulation by competing effectively with coagulation factors for PS binding sites and may similarly delay tumor progression. Furthermore, we also investigate the therapeutic potential of coagulation factor inhibitors within the context of cancer treatment. The development of multiple therapies targeting platelet activation and platelet-tumor cell interactions may not only reduce the lethal consequences of thrombosis but also impede tumor growth and spread.

6.
BMJ Open ; 13(3): e064700, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997257

RESUMO

OBJECTIVES: Small cell lung cancer (SCLC) is a lethal human malignancy, and previous studies support the contribution of microRNA to cancer progression. The prognostic value of miR-219-5p in patients with SCLC remains unclear. This study aimed to evaluate the predictive value of miR-219-5p with respect to mortality in patients with SCLC and to incorporate miR-219-5p level into a prediction model and nomogram for mortality. DESIGN: Retrospective observational cohort study. SETTING AND PARTICIPANTS: Our main cohort included data from 133 patients with SCLC between 1 March 2010 and 1 June 2015 from the Suzhou Xiangcheng People's Hospital. Data from 86 patients with non-SCLC at Sichuan Cancer Hospital and the First Affiliated Hospital of Soochow University were used for external validation. OUTCOME MEASURES: Tissue samples were taken during admission and stored, and miR-219-5p levels were measured at a later date. A Cox proportional hazard model was used for survival analyses and for analysing risk factors to create a nomogram for mortality prediction. The accuracy of the model was evaluated by C-index and calibration curve. RESULTS: Mortality in patients with a high level of miR-219-5p (≥1.50) (n=67) was 74.6%, while mortality in the low-level group (n=66) was 100.0%. Based on univariate analysis, we included significant factors (p<0.05) in a multivariate regression model: patients with high level of miR-219-5p (HR 0.39, 95% CI 0.26-0.59, p<0.001), immunotherapy (HR 0.44, 95% CI 0.23-0.84, p<0.001) and prognostic nutritional index score >47.9 (HR=0.45, 95% CI 0.24-0.83, p=0.01) remained statistically significant factors for improved overall survival. The nomogram had good accuracy in estimating the risk, with a bootstrap-corrected C-index of 0.691. External validation indicated an area under the curve of 0.749 (0.709-0.788). CONCLUSIONS: The miR-219-5p level was associated with a reduced risk of mortality in patients with SCLC. A nomogram incorporating MiR-219-5p level and clinical factors demonstrated good accuracy in estimating the risk of overall mortality. Prospective validation of the prognostic nomogram is needed.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Carcinoma de Pequenas Células do Pulmão , Humanos , Prognóstico , Carcinoma de Pequenas Células do Pulmão/genética , Estudos Retrospectivos , Nomogramas , MicroRNAs/genética , Neoplasias Pulmonares/genética
7.
Front Cardiovasc Med ; 10: 1062491, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824451

RESUMO

The role of hypoxia, vascular endothelial injury, and thrombotic inflammation in worsening COVID-19 symptoms has been generally recognized. Damaged vascular endothelium plays a crucial role in forming in situ thrombosis, pulmonary dysfunction, and hypoxemia. Thrombotic inflammation can further aggravate local vascular endothelial injury and affect ventilation and blood flow ratio. According to the results of many studies, obesity is an independent risk factor for a variety of severe respiratory diseases and contributes to high mechanical ventilation rate, high mortality, and slow recovery in COVID-19 patients. This review will explore the mechanisms by which obesity may aggravate the acute phase of COVID-19 and delay long COVID recovery by affecting hypoxia, vascular endothelial injury, and thrombotic inflammation. A systematic search of PubMed database was conducted for papers published since January 2020, using the medical subject headings of "COVID-19" and "long COVID" combined with the following keywords: "obesity," "thrombosis," "endothelial injury," "inflammation," "hypoxia," "treatment," and "anticoagulation." In patients with obesity, the accumulation of central fat restricts the expansion of alveoli, exacerbating the pulmonary dysfunction caused by SARS-CoV-2 invasion, inflammatory damage, and lung edema. Abnormal fat secretion and immune impairment further aggravate the original tissue damage and inflammation diffusion. Obesity weakens baseline vascular endothelium function leading to an early injury and pre-thrombotic state after infection. Enhanced procoagulant activity and microthrombi promote early obstruction of the vascular. Obesity also prolongs the duration of symptoms and increases the risk of sequelae after hospital discharge. Persistent viral presence, long-term inflammation, microclots, and hypoxia may contribute to the development of persistent symptoms, suggesting that patients with obesity are uniquely susceptible to long COVID. Early interventions, including supplemental oxygen, comprehensive antithrombotic therapy, and anti-inflammatory drugs, show effectiveness in many studies in the prevention of serious hypoxia, thromboembolic events, and systemic inflammation, and are therefore recommended to reduce intensive care unit admission, mortality, and sequelae.

9.
Biomed Pharmacother ; 157: 114080, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36481406

RESUMO

Persistent hyperglycemia increases inflammation response, promoting the development of myocardial fibrosis. Based on our previous research that exercise and metformin alone or their combination intervention could attenuate myocardial fibrosis in db/db mice, this study aimed to further explore the underlying mechanisms by which these interventions attenuate myocardial fibrosis in early diabetic cardiomyopathy. Forty BKS db/db mice were randomly divided into four groups. Diabetic db/db mice without intervention were in the C group. Aerobic exercise (7-12 m/min, 30-40 min/day, 5 days/week) was performed in the E group. Metformin (300 mg·kg-1·day-1) was administered in the M group. Exercise combined with metformin was performed in the EM group. Ten wild-type mice were in the WT group. All interventions were administered for 8 weeks. Results showed that the expression levels of α-SMA, Collagen I, and Collagen III were increased in 16-week-old db/db mice, which were reversed by exercise and metformin alone or their combination intervention. All interventions attenuated the level of TGF-ß1/Smad2/3 pathway-related proteins and reduced the expression of inflammatory signaling pathway-regulated proteins TNF-α, p-IκBα/IκBα, and p-NF-κB p65/NF-κB p65 in db/db mice. Furthermore, metformin intervention inhibited HNF4α expression via AMPK activation, whereas exercise intervention increased the expression of IL-6 instead of activating AMPK. In conclusion, exercise and metformin alone or their combination intervention inhibited the TGF-ß1/Smad pathway to attenuate myocardial fibrosis by reducing NF-κB-mediated inflammatory response. The anti-fibrotic effects were regulated by metformin-activated AMPK or exercise-induced elevation of IL-6, whereas their combination intervention showed no synergistic effects.


Assuntos
Cardiomiopatias Diabéticas , Metformina , Camundongos , Animais , NF-kappa B/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Interleucina-6 , Fibrose
10.
Front Immunol ; 13: 992384, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466841

RESUMO

COVID-19 patients have a high incidence of thrombosis, and thromboembolic complications are associated with severe COVID-19 and high mortality. COVID-19 disease is associated with a hyper-inflammatory response (cytokine storm) mediated by the immune system. However, the role of the inflammatory response in thrombosis remains incompletely understood. In this review, we investigate the crosstalk between inflammation and thrombosis in the context of COVID-19, focusing on the contributions of inflammation to the pathogenesis of thrombosis, and propose combined use of anti-inflammatory and anticoagulant therapeutics. Under inflammatory conditions, the interactions between neutrophils and platelets, platelet activation, monocyte tissue factor expression, microparticle release, and phosphatidylserine (PS) externalization as well as complement activation are collectively involved in immune-thrombosis. Inflammation results in the activation and apoptosis of blood cells, leading to microparticle release and PS externalization on blood cells and microparticles, which significantly enhances the catalytic efficiency of the tenase and prothrombinase complexes, and promotes thrombin-mediated fibrin generation and local blood clot formation. Given the risk of thrombosis in the COVID-19, the importance of antithrombotic therapies has been generally recognized, but certain deficiencies and treatment gaps in remain. Antiplatelet drugs are not in combination with anticoagulant treatments, thus fail to dampen platelet procoagulant activity. Current treatments also do not propose an optimal time for anticoagulation. The efficacy of anticoagulant treatments depends on the time of therapy initiation. The best time for antithrombotic therapy is as early as possible after diagnosis, ideally in the early stage of the disease. We also elaborate on the possible mechanisms of long COVID thromboembolic complications, including persistent inflammation, endothelial injury and dysfunction, and coagulation abnormalities. The above-mentioned contents provide therapeutic strategies for COVID-19 patients and further improve patient outcomes.


Assuntos
COVID-19 , Trombose , Humanos , COVID-19/complicações , Trombose/etiologia , Anticoagulantes/uso terapêutico , Fosfatidilserinas , Síndrome da Liberação de Citocina , Síndrome Pós-COVID-19 Aguda
11.
Oncol Lett ; 24(6): 432, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36311691

RESUMO

Breast cancer is a severe disease with high incidence and mortality rates in menopausal women. Previous studies have shown that nutritional status and inflammation play a significant role in the development of breast cancer. However, whether serum albumin (ALB) and neutrophils (NE) accelerate the progression of this disease remains unclear. In the present study, a total of 94 cases of newly diagnosed metastatic breast cancer were assessed. For analysis, 26 risk factors including ALB and NE were assessed. Multivariate Cox proportional hazards regression analysis was then used to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) after adjusting for continuous and categorical covariates. Compared with the control group, patients with disease progression, low levels of ALB, higher NE, counts, and higher neutrophil to lymphocyte ratio counts were associated with worse overall survival (OS). When these risk factors were fitted into a multivariate regression model, progression [P<0.001, HR=3.03 (1.62-5.66)], NE counts ≥3.370×109 [P=0.004, HR=2.15 (1.27-3.65)] and ALB levels <43.275 g/l [P=0.008, HR=0.47 (0.27-0.82)] remained statistically significant factors for a worse OS. These independently associated risk factors were used to form an OS estimation nomogram. The constructed nomogram demonstrated good accuracy in estimating risk, with a bootstrap-corrected C index of 0.686. We further collected data on 30 patients for external validation and found the nomogram had an accuracy of 83.3%. In conclusion, low serum ALB levels and increased NE counts were predictive of a poorer prognosis in patients with metastatic breast cancer. Nomograms based on the multivariate analysis showed a good predictive ability for estimating the risk of OS.

12.
Front Immunol ; 13: 955654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248790

RESUMO

Patients with COVID-19 often have hypoxemia, impaired lung function, and abnormal imaging manifestations in acute and convalescent stages. Alveolar inflammation, pulmonary vasculitis, and thromboembolism synergistically damage the blood-air barrier, resulting in increased pulmonary permeability and gas exchange disorders. The incidence of low platelet counts correlates with disease severity. Platelets are also involved in the impairment of pulmonary microcirculation leading to abnormal lung function at different phases of COVID-19. Activated platelets lose the ability to protect the integrity of blood vessel walls, increasing the permeability of pulmonary microvasculature. High levels of platelet activation markers are observed in both mild and severe cases, short and long term. Therefore, the risk of thrombotic events may always be present. Vascular endothelial injury, immune cells, inflammatory mediators, and hypoxia participate in the high reactivity and aggregation of platelets in various ways. Microvesicles, phosphatidylserine (PS), platelets, and coagulation factors are closely related. The release of various cell-derived microvesicles can be detected in COVID-19 patients. In addition to providing a phospholipid surface for the synthesis of intrinsic factor Xase complex and prothrombinase complex, exposed PS also promotes the decryption of tissue factor (TF) which then promotes coagulant activity by complexing with factor VIIa to activate factor X. The treatment of COVID-19 hypercoagulability and thrombosis still focuses on early intervention. Antiplatelet therapy plays a role in relieving the disease, inhibiting the formation of the hypercoagulable state, reducing thrombotic events and mortality, and improving sequelae. PS can be another potential target for the inhibition of hypercoagulable states.


Assuntos
COVID-19 , Coagulantes , Trombose , Fatores de Coagulação Sanguínea , Plaquetas , Fator VIIa , Fator X , Humanos , Mediadores da Inflamação , Fator Intrínseco , Pulmão , Microcirculação , Fosfatidilserinas , Inibidores da Agregação Plaquetária , Tromboplastina , Trombose/etiologia
13.
Oxid Med Cell Longev ; 2022: 2297268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120597

RESUMO

Objective: Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2DM) commonly coexist and act synergistically to drive adverse clinical outcomes. This study is aimed at investigating the effects of exercise intervention and oral hypoglycaemic drug of metformin (MET) alone or combined on hepatic lipid accumulation. To investigate if oxidative stress and endoplasmic reticulum stress (ERS) are involved in lipotoxicity-induced hepatocyte apoptosis in diabetic mice and whether exercise and/or MET alleviated oxidative stress or ERS-apoptosis by AMPK-Nrf2-HO-1 signaling pathway. Methods: Forty db/db mice with diabetes (random blood glucose ≥ 250 mg/dL) were randomly allocated into four groups: control (CON), exercise training alone (EX), metformin treatment alone (MET), and exercise combined with metformin (EM) groups. Hematoxylin-eosin and oil red O staining were carried out to observe hepatic lipid accumulation. Immunohistochemical and TUNEL methods were used to detect the protein expression of the binding immunoglobulin protein (BiP) and superoxide dismutase-1 (SOD1) and the apoptosis level of hepatocytes. ERS-related gene expression and the AMPK-Nrf2-HO-1 signaling pathway were tested by western blotting. Results: Our data showed that db/db mice exhibited increased liver lipid accumulation, which induced oxidative and ER stress of the PERK-eIF2α-ATF4 pathway, and hepatocyte apoptosis. MET combined with exercise training significantly alleviated hepatic lipid accumulation by suppressing BiP expression, the central regulator of ER homeostasis, and its downstream PERK-eIF2α-ATF4 pathway, as well as upregulated the AMPK-Nrf2-HO-1 signaling pathway. Moreover, the combination of exercise and MET displayed protective effects on hepatocyte apoptosis by downregulating Bax expression and TUNEL-positive staining, restoring the balance of cleaved-caspase-3 and caspase-3, and improving the antioxidant defense system to prevent oxidative damage in db/db mice. Conclusion: Compared to MET or exercise intervention alone, the combined exercise and metformin exhibited significant effect on ameliorating hepatic steatosis, inhibiting oxidative and ER stress-induced hepatocyte apoptosis via improving the capacity of the antioxidant defense system and suppression of the PERK-eIF2α-ATF4 pathway. Furthermore, upregulation of AMPK-Nrf2-HO-1 signaling pathway might be a key crosstalk between MET and exercise, which may have additive effects on alleviating hepatic lipid accumulation.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Metformina , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose , Glicemia , Caspase 3/metabolismo , Diabetes Mellitus Experimental/metabolismo , Estresse do Retículo Endoplasmático , Amarelo de Eosina-(YS)/farmacologia , Hematoxilina/farmacologia , Hepatócitos/metabolismo , Hipoglicemiantes/farmacologia , Lipídeos , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais , Superóxido Dismutase-1/metabolismo , Proteína X Associada a bcl-2/metabolismo
14.
Exp Ther Med ; 24(3): 560, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35978919

RESUMO

Lung cancer is a common malignancy that is difficult to treat and has a high risk of mortality. Although gastrointestinal lymph node metastasis has long been known to exert major impact on the prognosis of lung cancer, the mechanism of its occurrence and potential biological markers remain elusive. Therefore, the present study retrospectively analyzed data from 132 patients with non-small cell lung cancer (NSCLC) combined with lymph node metastasis between February 2010 and April 2019 from the First Affiliated Hospital of Soochow University (Suzhou, China) and Sichuan Cancer Hospital (Chengdu, China). Overall survival was assessed using Kaplan-Meier analysis and Cox logistic regression model. In addition, a prediction model was constructed based on immune indicators such as complement C3b and C4d (measured by ELISA), before the accuracy of this model was validated using calibration curves for 5-year OS. Among the 132 included patients, a total of 92 (70.0%) succumbed to the disease within 5 years. Multifactorial analysis revealed that complement C3b deficiency increased the risk of mortality by nearly two-fold [hazard ratio (HR)=2.23; 95% CI=1.20-4.14; P=0.017], whilst complement C4d deficiency similarly increased the risk of mortality by two-fold (HR=2.14; 95% CI=1.14-4.00; P=0.012). The variables were subsequently screened using Cox model to construct a prediction model based on complement C3b and C4d levels before a Nomogram plotted. By internal validation for the 132 patients, the Nomogram accurately estimated the risk of mortality, with a corrected C-index of 0.810. External validation of the model in another 50 patients from Sichuan Cancer Hospital revealed an accuracy of 77.0%. Overall, this mortality risk prediction model constructed based on complement levels showed accuracy in assessing the prognosis of patients with metastatic NSCLC. Therefore, complement C3b and C4d have potential for use as biomarkers to predict the risk of mortality in such patients.

15.
Front Cardiovasc Med ; 9: 957006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990983

RESUMO

The pandemic respiratory illness SARS-CoV-2 has increasingly been shown to be a systemic disease that can also have profound impacts on the cardiovascular system. Although associated cardiopulmonary sequelae can persist after infection, the link between viral infection and these complications remains unclear. There is now a recognized link between endothelial cell dysfunction and thrombosis. Its role in stimulating platelet activation and thrombotic inflammation has been widely reported. However, the procoagulant role of microparticles (MPs) in COVID-19 seems to have been neglected. As membrane vesicles released after cell injury or apoptosis, MPs exert procoagulant activity mainly by exposing phosphatidylserine (PS) on their lipid membranes. It can provide a catalytic surface for the assembly of the prothrombinase complex. Therefore, inhibiting PS externalization is a potential therapeutic strategy. In this paper, we describe the pathophysiological mechanism by which SARS-CoV-2 induces lung and heart complications through injury of endothelial cells, emphasizing the procoagulant effect of MPs and PS, and demonstrate the importance of early antithrombotic therapy. In addition, we will detail the mechanisms underlying hypoxia, another serious pulmonary complication related to SARS-CoV-2-induced endothelial cells injury and discuss the use of oxygen therapy. In the case of SARS-CoV-2 infection, virus invades endothelial cells through direct infection, hypoxia, imbalance of the RAAS, and cytokine storm. These factors cause endothelial cells to release MPs, form MPs storm, and eventually lead to thrombosis. This, in turn, accelerates hypoxia and cytokine storms, forming a positive feedback loop. Given the important role of thrombosis in the disease, early antithrombotic therapy is an important tool for COVID-19. It may maintain normal blood circulation, accelerating the clearance of viruses, waning the formation of MPs storm, and avoiding disease progression.

16.
Front Immunol ; 13: 862522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464473

RESUMO

Lung injury may persist during the recovery period of COVID-19 as shown through imaging, six-minute walk, and lung function tests. The pathophysiological mechanisms leading to long COVID have not been adequately explained. Our aim is to investigate the basis of pulmonary susceptibility during sequelae and the possibility that prothrombotic states may influence long-term pulmonary symptoms of COVID-19. The patient's lungs remain vulnerable during the recovery stage due to persistent shedding of the virus, the inflammatory environment, the prothrombotic state, and injury and subsequent repair of the blood-air barrier. The transformation of inflammation to proliferation and fibrosis, hypoxia-involved vascular remodeling, vascular endothelial cell damage, phosphatidylserine-involved hypercoagulability, and continuous changes in serological markers all contribute to post-discharge lung injury. Considering the important role of microthrombus and arteriovenous thrombus in the process of pulmonary functional lesions to organic lesions, we further study the possibility that prothrombotic states, including pulmonary vascular endothelial cell activation and hypercoagulability, may affect long-term pulmonary symptoms in long COVID. Early use of combined anticoagulant and antiplatelet therapy is a promising approach to reduce the incidence of pulmonary sequelae. Essentially, early treatment can block the occurrence of thrombotic events. Because impeded pulmonary circulation causes large pressure imbalances over the alveolar membrane leading to the infiltration of plasma into the alveolar cavity, inhibition of thrombotic events can prevent pulmonary hypertension, formation of lung hyaline membranes, and lung consolidation.


Assuntos
COVID-19 , Lesão Pulmonar , Trombofilia , Trombose , Assistência ao Convalescente , COVID-19/complicações , Humanos , Lesão Pulmonar/etiologia , Alta do Paciente , SARS-CoV-2 , Trombofilia/etiologia , Trombose/etiologia , Síndrome Pós-COVID-19 Aguda
17.
Cancer Med ; 11(17): 3272-3281, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35312179

RESUMO

BACKGROUND: Poor air quality can result in a variety of respiratory disorders. However, the air quality index (AQI) and the level of fine particulate matter (PM2.5) on the progression and prognosis of nonsmall-cell lung cancer (NSCLC) are unclear. METHODS: We launched a cohort study focused on the relationship between air quality and overall survival as well as progression, incorporating data from 590 patients with NSCLC in our medical center between November 1, 2013 and March 1, 2016. Forty-nine patients from Sichuan Cancer Hospital were used for validation. RESULTS: Cases with poorer AQI 6 months before NSCLC diagnosis were more likely to progress to stage III to IV NSCLC than controls (OR = 2.61, 95% CI 1.35-5.24, p = 0.005). Similarly, if exposed to high levels of PM2.5 during these 6 months, overall survival was poor (HR [95% CI] = 1.53 [1.13, 2.07], p = 0.006). According to multivariate analysis, age, gender, KPS, PM2.5, hyperlipemia, and NSCLC stage were independent risk factors of overall survival. A predictive model developed by these factors above yielded a favorable agreement (C-index = 0.758) on the calibration curve. External validation was conducted by 46 patients from Sichuan Cancer Hospital displaying an AUC of 0.724 (0.684-0.763). CONCLUSIONS: PM2.5 and AQI levels affect disease progression and long-term survival in NSCLC patients. An overall survival prediction model based on the PM2.5 level can help clinicians predict the risk of death in NSCLC.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Estudos de Coortes , Humanos , Neoplasias Pulmonares/induzido quimicamente , Material Particulado/efeitos adversos , Material Particulado/análise , Prognóstico
18.
Front Med (Lausanne) ; 9: 853941, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308559

RESUMO

Background: D-dimer is a fibrin-degrading substance that is soluble and whose degradation is produced by plasma protein-mediated degradation of cross-linked fibrin. Previous investigations have shown a link between D-dimer and the mortality in lung cancer patients. However, different investigations varied whether D-dimer could predict prognosis in these patients. Methods: A meta-analysis and systematic review of all available cohort studies were performed on the link between circulating D-dimer levels and survival of lung cancer patients. Relevant studies were searched in Embase, Cochrane Library, and PubMed databases. Data from 540 lung cancer patients from the First Hospital of Soochow University and Sichuan Cancer Hospital were used for external validation. Results: We finally obtained 19 eligible cohort studies with pooled HR showing that high D-dimer levels contribute to death in tumor group (HR 1.62, 95% CI: 1.39-1.88, I2 = 75.0%). Further stratified analysis showed that higher circulating D-dimer in the advanced lung cancer group was linked to a 1.91-fold risk (HR = 2.91, 95% CI: 2.24-3.78, I2 = 6.0%). Incorporation of other variables, including days of follow-up, country, design, public year, population, disease status, and quality score, into the meta-regression model, indicated that disease status was an additional source of heterogeneity (p < 0.001). External validation of 540 patients also showed that high levels of D-dimer showed a higher risk of overall mortality (HR 1.39, 95% CI: 1.13-1.72, p = 0.002) and VTE events (HR 3.98, 95% CI: 1.99-8.70, p = 0.002) in lung cancer patients. Conclusions: High circulating plasma D-dimer levels independently predict long-term prognosis and the risk of venous thromboembolism in lung cancer.

19.
Postgrad Med J ; 98(1166): 919-924, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37063027

RESUMO

INTRODUCTION: Pulmonary cancer is a kind of deeply invasive tumour which is difficult to treat, and its mortality rate is high. Previous research has shown that activation of complement could contribute to the progression of non-small-cell lung cancer (SCLC). However, little research has been done on SCLC. METHODS: Complement factor H (CFH), complements C3 as well as C4 were measured in patients, and the prognostic impact of different parameters was assessed by log-rank function analysis and Cox multifactor models. Besides, we constructed a predictive model based on complement fractions and validated the accuracy of the model. RESULTS: Among these 242 patients, 200 (82.6%) died. The median survival time was 18.3 months. We found by multifactorial analysis that high levels of CFH decreased the risk of death (HR 0.23, 95% CI 0.10 to 0.57, p<0.001), while elevated complement C4 displayed poor prognosis (HR 2.28, 95% CI 1.66 to 3.13, p<0.001). We screened variables by Cox models and constructed CFH-based prediction models to plot a nomogram by internal validation. The nomogram showed excellent accuracy in assessing the probability of death, yielding an adjusted C-statistics of 0.905. CONCLUSIONS: CFH can be recognised as a biomarker to predict the risk of death in SCLC. The prediction model established based on CFH, C3 and C4 levels has good accuracy in patients' prognostic assessment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Fator H do Complemento , Prognóstico
20.
Clin Res Hepatol Gastroenterol ; 46(1): 101697, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33848669

RESUMO

BACKGROUND: Nonalcoholic steatohepatitis (NASH) patients are at a high risk of developing venous thromboembolism, with a high rate of morbidity and mortality. The role of neutrophil extracellular traps (NETs) in procoagulant activity (PCA) in patients with NASH remains unclear. Our study aimed to investigate the formation of NETs in NASH patients stimulated by specific pro-inflammatory factors. Moreover, we evaluated the pivotal role of NETs in the induction of hypercoagulability in NASH and the interaction between NETs and endothelial injury. METHOD: The levels of the NETs biomarkers were evaluated in the plasma samples of 27 NASH patients and 18 healthy subjects. The formation of NETs was visualized using immunofluorescence microscopy. The PCA of the NETs was assessed using coagulation time, purified coagulation complex, and fibrin formation assays. Confocal microscopy was further used to evaluate the interactions between the NETs and HUVECs. RESULTS: The levels of NETs markers in the plasma of NASH patients were significantly higher than healthy controls. NETs derived from NASH enhanced thrombin and fibrin formation and significantly reduced CT (p<0.05). The mixture of IL-6 and TNF-α triggered the NETs release in the plasma rather than them alone. Additionally, the NETs exerted cytotoxic effects on the endothelial cells, converting them to a procoagulant and pro-inflammatory phenotype, and DNase I could reverse these effects. CONCLUSION: Our results revealed the primary role of NETs in promoting the hypercoagulable state in NASH patients. Methods that prevent the formation of NETs may be a novel approach for the prevention and treatment of NASH.


Assuntos
Armadilhas Extracelulares , Hepatopatia Gordurosa não Alcoólica , Coagulação Sanguínea , Citocinas , Células Endoteliais , Fibrina , Humanos , Neutrófilos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...